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SUMMARY 

 

The work described in this report was initiated to identify, down-select, and pre-validate 

biomarkers of toxic substance effects on a selected target-organ in a rat animal model that may 

occur within the warfighter prior to inducing a reduction in health or operational performance. 

Using the biotechnology of metabonomics (NMR-based and UPLC/MS-based), this research 

effort focused on identification of potential liver-selective markers of toxic effects induced by 

the cholestatic agent alpha-naphthylisothiocyanate (ANIT) in rats that may be extrapolated to 

identifying warfighter organ-specific chemical exposure effects before significant decrement to 

mission performance or latent induction of an organ-targeted disease process is observed. Results 

of the present study indicated that NMR and UPLC/MS analysis of rodent urine samples could 

detect changes in metabolite profiles, using either simple statistics (p<0.05) or computer-based 

multi-dimensional statistical analysis, following exposure to ANIT at levels below that indicative 

of toxicity by traditional clinical and histopathological methods. 
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1.0 INTRODUCTION 

  

Metabonomics can be viewed as a systems biology approach that integrates divergent 

effects that occur over both time and space (Fernie et al., 2004; Lindon
1
 et al., 2004). 

Metabonomics is defined as “the quantitative measurement of the time-related multiparametric 

metabolic response of living organisms to pathophysiological stimuli or genetic modification” 

(Nicholson et al., 1999). This term is derived from the Greek roots “meta” (change) and “nomos” 

(regularity and order); referring to the ability of chemometric models to classify changes in 

metabolism (Lindon
1
 et al., 2004). This biotechnology was pioneered by Jeremy Nicholson, Elaine 

Holmes and John Lindon in the late 1990s at the Imperial College in London (Nicholson et al., 

1999). The field of metabonomics is concerned with the study of fixed cellular and biofluid 

concentrations of endogenous metabolites, as well as dynamic metabolite fluctuations, 

exogenous species, and molecules that arise from chemical rather than enzymatic processing 

(Lindon et al., 2003). Use of metabonomics has increased the ability to identify and characterize 

the site and extent of cellular injury earlier and more accurately than traditional clinical 

chemistry or histopathology. This technique can identify metabolic markers of toxicity, 

progression of injury, response to treatment and recovery from insult in easily collected biofluids 

such as blood and urine (Lenz et al., 2003; Holmes et al., 2000; Lindon et al., 1999; Anthony
1
 et 

al., 1994; Holmes
1
 et al., 1992; Holmes

2
 et al., 1992). Furthermore, extensive literature exists on 

the use of metabonomics procedures to evaluate chemical/drug induced target-organ toxicity 

(Nicholson et al., 2002; Robertson et al., 2000; Holmes and Shockcor, 2000; Beckwith-Hall et 

al., 1998; Holmes et al., 1998a; Holmes
1
 et al., 1998; Anthony

2
 et al., 1994).  

 

A frequent misconception is that metabonomics is based primarily on nuclear magnetic 

resonance spectroscopy (NMR)-derived data. In theory, any technology that has the capacity to 

generate comprehensive metabolite measurements can be used for metabonomics. The most 

common analytical platforms used today in metabonomics are proton NMR and mass 

spectroscopy coupled to ultra pressure liquid chromatography (UPLC/MS) or gas 

chromatography.  The advantages of NMR-based metabonomics include nondestructive analysis, 

applicable to intact biomaterial, and information-rich with respect to determinations of molecular 
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structure, especially in complex mixtures. The non-selectivity, lack of sample bias and 

reproducibility of NMR is of critical importance when considering toxicological screening 

applications (Keun et al. 2002). Changes in NMR-derived urinary metabolite levels have proven 

to be a sensitive indicator of chemical-induced toxicity (Waters et al., 2002; Nicholson, et al., 

2002; Reo, 2002; Robertson et al., 2000; Holmes and Shockcor, 2000; Anthony
2
 et al., 1994). 

 

Mass spectroscopy offers the ability to detect chemical classes not detected by NMR (i.e. 

sulfates), and the capability to detect lower abundance metabolites with little sample processing 

(Dunn and Ellis, 2005). This is of critical importance if one is searching for novel biomarkers of 

toxicity or disease. Urinary metabolite analysis using UPLC/MS has also been used to profile 

chemical-induced toxicity (La et al., 2005). It is clear to see that UPLC/MS is complimentary to 

NMR data and facilitates metabolite identification. 

 

α-Naphthylisothiocyanate (ANIT) is a cholestatic hepatotoxin that has been used as a 

model compound for developing metabonomic techniques. ANIT is known to induce 

hepatocellular and biliary epithelial cell necrosis, bile duct obstruction and biliary cell 

hyperplasia in rats (Plaa, and Priestly, 1976; Goldfarb et al., 1962). In addition, ANIT has been 

thoroughly characterized biochemically with respect to dose and time (Uchida et al., 2002; 

Chisholm and Dolphin, 1996). Much is known about the systemic response to ANIT exposure, 

such as the increase in plasma levels of bile acid, cholesterol and phospholipids in male rats after 

a single 100 mg/kg ANIT oral exposure (Chisholm and Dolphin, 1996). Therefore, ANIT is an 

ideal compound to evaluate the sensitivity of NMR-based metabonomics and to assess the time- 

and dose-response relationships of chemically induced toxicity. 

 

The extent of toxicity is dependent on both dose and time (Rozman and Doull, 1998). 

Therefore, the use of a metabonomics approach for toxicological assessment must go beyond 

simply looking for differences between experimental control and exposed animals at toxic doses. 

A number of reviews on the role of metabonomics in toxicology have been published 

(Robertson, 2005; Lindon
1
 et al., 2004; Lindon

2
 et al., 2004; Lindon et al., 2003; Shockcor and 

Holmes, 2002; Reo, 2002). For a description of the severity of biological effects and a valid 
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identification of true biomarkers of toxicity it is critical to consider both time and dose as factors 

of toxicity. The objective of this study was to investigate the dose and time dependent responses 

of the urinary metabolic profile following an acute exposure to the hepatotoxicant ANIT in F344 

rats over four days. The present study included six doses of ANIT ranging from 0.1 to 100 

mg/kg. This range represents dosages that are non-toxic to overtly toxic, as determined by 

clinical chemistry and histopathology. The results of the present study show that proton NMR 

and UPLC/MS analysis of rat urine were sensitive enough to reveal the relationship between 

dose and time, even at non-toxic dose levels, a key step toward biomarker discovery.  
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2.0 METHODS 

2.1 Animals 

 All protocols for handling laboratory animals were approved by the Wright-Patterson 

Institutional Animal Care and Use Committee (IACUC) and meet appropriate Federal guidelines. 

Male Fischer 344 rats (CDFR(F344)/CrlBR; 200-250 g) were used for all experiments. Animals 

were obtained from Charles Rivers Laboratory (Raleigh, NC) with surgically implanted jugular 

vein catheters. Animals were transferred into metabolism cages (Lab Products, Inc, Seaford, DE) 

five days prior to the start of the study to allow acclimation to the new environment. All animals 

were housed individually in metabolism cages for the duration of the experiment, and were given 

ad libitum access to food (Purina Certified Rat Chow # 5002) and fresh conditioned reverse 

osmosis water. The housing environment was maintained on a 12 hour light-darkness cycle at 25 

°C, and all animals were examined by Vivarium personnel twice daily. Animals were given a 

single administration, via oral gavage at 10 mL/kg, of ANIT in corn oil vehicle at one of the 

following doses: 0.1, 1, 10, 20, 50 or 100 mg/kg. Control animals received corn oil only at 10 

mL/kg. Separate control groups were included for each ANIT dose study. The sample sizes (n-

values) are given in the legend to Figures 2 and 3. Blood samples were collected 10 d pre-dose 

and 24 h post-dose from the jugular vein catheter, and at termination on day-4 via the inferior 

vena cava. Saline-heparin lock solution was removed from catheters prior to withdrawing 1.4 mL 

of blood for plasma collection. The first 100 μL of blood collected was discarded. Urine samples 

were collected daily into 50 mL collection tubes, containing 1 mL of 1% sodium azide and were 

chilled on dry ice. All urine samples were stored at -20 °C prior to analysis by NMR 

spectroscopy. Rats were sacrificed by carbon dioxide inhalation four days post-dose, and livers 

were removed and fixed for histopathology as described below. 

 

2.2 Plasma Biochemistry 

Rat blood was collected pre-dose, 24 h post-dose and at the time the animals were 

euthanized.  Plasma was separated from the cellular components by centrifugation and frozen at -

80 °C until analyzed.  Animal plasma samples were analyzed for aspartate aminotransferase 
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(AST), alanine aminotransferase (ALT), alkaline phosphatase (ALKP), urea nitrogen (BUN), 

creatine (CREA) and total protein (TP) activities using a Vet Test (Westbrook, ME) clinical 

chemistry analyzer.  All clinical chemistry assays were performed in accordance with 

manufacturer‟s protocols for this clinical chemistry analyzer. 

 

2.3 Histopathology 

 Target tissues (i.e. liver and kidney) were collected at sacrifice, fixed in 10% formalin 

and processed in accordance with accepted pathological protocols.  Briefly, tissues were 

embedded in paraffin, sliced and stained with hematoxylin and eosin.  Sections were evaluated 

by a staff veterinarian pathologist by light microscopy for mononuclear cellular infiltration, 

biliary hyperplasia/hypertrophy, portal edema and portal inflammation.  Severity was graded on 

a scale of one to five with one being minimal and five being severe. 
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2.4 NMR Metabonomics 

2.4.1 Urine Sample Processing.   

 

Urine samples for NMR analysis were prepared as described by Robertson et al. (2000) 

and modified as follows.  Urine samples were thawed at
 
4 °C

 
overnight, and then equilibrated to 

room temperature just prior to NMR sample preparation.  A 600 µL aliquot of urine was 

transferred to a 1.5 mL Eppendorf tube, mixed with 300 L of phosphate buffer (0.2 M 

monosodium phosphate and 0.2 M disodium phosphate, pH 7.4), and allowed to equilibrate for 

ten minutes.  Samples were then centrifuged at 5000 rpm for ten minutes to remove any 

particulate matter, and 550 µL of supernanant was transferred to a 5 mm NMR tube.  An internal 

standard consisting of 150 µL of trimethylsilylpropionic (2, 2, 3, 3 d4) acid (TSP) dissolved in 

deuterium oxide was added at a final concentration of 2 mM. 

2.4.2 NMR Spectroscopy.   

            Proton NMR spectra were acquired on a Varian INOVA operating at 600 MHz and a 

probe temperature of 25 °C. Water suppression was achieved using the first increment of a 

NOESY pulse sequence, which incorporated saturating irradiation (on resonance for water) 

during the relaxation delay (2 s pre-saturation) and the mixing time. The urine sample acquisition 

parameters included a mixing time of 38 ms and a 4.0 s acquisition time. The data were signal 

averaged over 64 transients using an interpulse delay of 9.05 s. 
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2.4.3  Multivariate Statistical Analysis.   

Proton NMR spectral data were processed using Varian software and employing 

exponential multiplication (0.3 Hz line-broadening), Fourier transformation, and baseline 

flattening (fifth-order polynomial and spline fitting routines).  Spectra were subdivided into 280 

regions (bins) of 0.04 ppm width for integration using Varian Binning software.  The residual 

water signal (~4.8 ppm) and the urea signal in urine spectra (~5.8 ppm) were excluded from the 

analyses.  Integrated bin areas were transferred to an Excel file and normalized to the TSP signal 

intensity.  A second normalization was performed by summing 256 bins over the entire 

metabolite range, which excludes the region of TSP signal (0.53 to -0.28 ppm).  These 256 'sum 

normalized' bins were used as input to principal component analysis (PCA) and linear 

discriminant analysis (LDA) performed using MatLab 7.0. Pattern recognition method (PCA 

scores plots) was used to enable data visualization and help to identify interesting samples and 

time-points such as: outliers; time of maximum biochemical impact; average time to recovery; 

rats showing different rates of recovery; etc. Orthogonal Partial Least Squares-Discriminant 

Analysis (OPLS-DA) was used to enable classification into specific groups. The OPLS 

correlation coefficients were then used to weight and rank the salient spectral peaks (metabolites 

signals). Various quality metrics were used to validate and provide a level of statistical 

confidence to the results (i.e., Q2, R2, accuracy, leave-one-out cross validation, bin-by-bin t-

tests, etc). Bin-by-bin t-test was used to identify significant spectral features that showed similar 

patterns of change across the study time-course. Statistical group comparisons and hierarchal 

cluster analysis were conducted to discern similar and dissimilar spectral features between 

exposed and control animals. Data from individual animals were analyzed as a function of time, 

as each animal served as its own control. The salient spectral resonances were assigned to 

metabolites using Chenomx 5.1 software, on-line NMR databases (i.e., mmcd.nmrfam.wisc.edu; 

U. Wisconsin, etc), and by "spiking" samples with known compounds, if necessary. 
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2.5 UPLC/MS Metabonomics    

High-performance liquid chromatography based metabonomics analysis was performed using the 

Waters Acquity® ultra-performance liquid chromatography coupled to a Waters Q-ToF® hybrid 

tandem quadrupole/time of flight mass spectrometer (UPLC/MS) equipped with an electrospray 

source operating in either positive or negative ion mode, and an integrated Lockspray interface 

for exact mass measurements and with extended dynamic range.  Prior to analysis by UPLC/MS, 

rat urine aliquots of 1 ml were centrifuged at 14000 x g for 10 minutes at 4 C to remove 

insoluble material,  the supernatant was filtered using a 0.22μm PTFE filter,  the supernatant was 

then diluted 1:3 in water and injected into an LC/ESI/Q-ToF/MS without further manipulation.  

Arrangements were made to use the UPLC-MS Waters metabolic profiling platform at the 

Laboratory for Translational Medicine at Harvard Medical School, Cambridge, MA, under the 

direction of Dr. Nestor Tarragona. This platform provides both extremely high chromatographic 

resolution and reproducibility in combination with high mass accuracy (<10 ppm) and an 

integrated software suite for the identification of potential metabolite biomarkers via the Waters 

Markerlynx package. 

 

2.5.1  UPLC-MS Conditions: 

 

1) Stationary phase: 2.1 x 100 mm 1.7 μm UPLC C 18  

2) Mobile Phase was different in positive and negative mode. 

- For W positive: Solvent A: 0.1% Formic Acid in Water. Solvent B: 0.1% Formic 

Acid in Acetonitrile. 

- For W negative: Solvent A: 0.1% Ammonium Acetate in Water. Solvent B: 0.1% 

Ammonium Acetate in Acetonitrile. 

 

3) Gradient 
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4) Flow rate: 0.4 ml/min 

5) Injection volume: 10 μl 

 

The mass spectrometer was equipped with an electrospray source, operating in either 

positive or negative ion mode (W mode), and an integrated Lockspray interface. The Internal 

lock masses were 50 fmol/μl Leucine Enkephalin and 500 fmol/μl of reserpine in Water-

Methanol (1:1). Cone Voltage was set to 15 V, de-solvation and source temperature to 300 ˚C 

and 100 respectively. Mass acquisition Range was between 70-1000 m/z 

 

2.6 Data Analysis and Metabolite Identification 

UPLC/MS data was analyzed by Dr Harry Luithart of Solutions Labs, Cambridge, MA, 

using the Waters MarkerLynx Applications Manager (latest version). MarkerLynx software 

incorporates a peak de-convolution package that allowed detection and retention time alignment 

of the peaks eluting in each chromatogram. The data was combined into a single matrix by 

aligning peaks with the same mass/retention time pair together from each data file in the dataset, 

along with their associated intensities. Data was also de-isotoped prior to subsequent analysis. 

PCA of resulting data matrix shows outstanding clustering in a scores plot of the first two 

components. 
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2.6.1  Data Preprocessing for Pattern Recognition.   

The data matrix generated by MarkerLynx is extremely sparse, and each zero intensity 

reported was actually a reading made below a lower bound threshold (i.e. they are unreliable 

values). Therefore, the original set of approximately 14,000 variables was subjected to a filtering 

procedure aimed at retaining only variables that have a high probability of appearing in a 

reproducible fashion in follow-up studies. Our filtering method is a modification of procedures 

recommended by Smilde et al. (2005). We imposed an “80% rule” in which an ionic species 

must have at least 80% non-zero readings in at least one of the five data groups (i.e. pre-dose, 0 

mg/kg 24 and 48 hours, 50 mg/kg 24 and 48 hours). If this criterion is not met, then a variable is 

removed from the data matrix, and the final data matrix ends up containing approximately 4000 

variables. This reduced data matrix is normalized using the sum of the individual sample 

intensities, and the variables are subsequently scaled using a unit variance transform. The effect 

of using a logarithmic transform prior to scaling was also considered. 

 

2.6.2  UPLC/MS Chemometric Analysis.  

 

 Data for time 48 hours post-exposure was considered in a two group analysis using PLS-

DA. After removing any outliers, over 99% variance was captured in the first component of the 

Y-block, and the first component of the X-block captured approximately 45% of its variation. 

Thus, first component loadings may be used to rank variables with respect to group separation. 

By studying the magnitude of loadings and trends plots of ion species across samples, it became 

apparent that up to 1000 variables might be important for separating the two groups. 
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3.0 RESULTS AND DISCUSSION 

 

3.1 Clinical Chemistry and Histopathology 

 

Clinical chemistry analyses indicated that rats exposed to 100 mg/kg ANIT showed 

significant (p ≤ 0.05) elevation of liver transaminases (AST and ALT) and ALKP throughout the 

four-day study period when compared to control (Table 1). Blood clinical chemistry data for the 

two-day study involving 50 mg/kg ANIT and vehicle controls are shown in Table 2.  

 

Table 1: Plasma enzyme activity assays for alkaline phosphatase (ALKP), alanine 

aminotransferase (ALT), and aspartate aminotransferase (ASP) in rats treated with a 

single dose of ANIT or corn oil (vehicle control) at day-zero. 

Values are Mean ± SD (n=5). 
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Table 2: Measures of plasma enzymes in rats treated with a single dose of 50 mg/kg ANIT 

or corn oil (vehicle control) at day-zero. 

 Values are Mean ± SD (n = 5 – 8). The asterisk denotes a significant difference from control at 

the corresponding time (p≤0.05). Abbreviations are given in Table 1. 

 

 

Rats exposed to 50 mg/kg ANIT showed a significant elevation in liver transaminases at 

days one and two post-exposure, but recovered to normal levels by day-4 (Tables 1 and 2). 

ALKP in this group was significantly elevated at day-two, but not days one or four. Rats exposed 

to ANIT concentrations less than 50 mg/kg did not demonstrate any significant change in liver 

enzymes throughout the study. The highest ANIT dose tested that did not induce any significant 

clinical effects on the liver was 20 mg/kg. Histopathological examination of the liver indicated 

that no significant changes occurred in any of the animals exposed to ANIT at ≤20 mg/kg. 

However, significant histopathological changes were observed in rats exposed to ANIT at 50 

mg/kg or higher at four days post-dose (Table 3). For the 50 mg/kg ANIT study terminated at 

two days post-exposure, histopathology of livers yielded similar severity scores as the four-day 

study for this dose group (minimal to mild effects with severity scores of 1-2; data not shown). 

 

Table 3: Liver histopathology scores in rats at four days post-dose with either corn oil 

(control) or ANIT at doses indicated. 

 Severity scores for individual rats are: 0 = no lesion, 1 = minimal, 2 = mild, 3 = moderate, 4 = 

marked and 5 = severe. The gray shading indicates data are significantly different from control 

(2-tailed Wilcoxon Rank Sum test, p ≤ 0.05). 
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3.2 NMR Spectroscopy of Urine Samples 

 

The NMR spectra shown in Figure 1 represent the changes in endogenous components of 

urinary metabolites observed over time in a rat given a single oral dose of 100 mg/kg ANIT. The 

pre-dose urine NMR spectrum is representative of naïve animals. Twenty-four hours following 

exposure to 100 mg/kg ANIT the intensities of resonances from α-ketoglutarate, citrate, and 

hippurate were clearly reduced. By day-two, these signals continued to decrease, along with an 

increase in creatine. NMR spectra for this ANIT dose group returned towards the pre-dose 

profile by day-four (as observed by PCA; spectra not shown). More details regarding the 

metabolic changes are presented in LDA Results below. 
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Figure 1. Representative 600 MHz 1H NMR urine spectra from a rat dosed with 100 mg/kg 

ANIT showing changes from (A) pre-dose to (B) day-one and (C) day-two post-dose.  

Major analytes that were affected by ANIT treatment are labeled in the aliphatic region (2.0 to 

4.0 ppm). TSP, water and urea are labeled for reference. See text for abbreviations. 

creatine 
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3.2.1  PCA Results.   

            The 256 bin intensities from each urine spectrum provided multivariate data input to  

PCA, which was conducted for each dose group in combination with the vehicle-treated control  

group. The results are presented graphically in Figures 2 - 4.  

 

Figure 2 shows PCA scores plots (PC1 vs. PC2) for each dose group versus controls as a 

function of time from pre-dose (d0) to day-four post-dose (d4). The use of the first two principal 

components (PCs) was sufficient to demonstrate pattern separation between treatment groups. 

For all analyses, the first two PCs explained >50% of the variance in the data. Data points 

represent the mean values for the PCs at each time point, and the ellipse encircling each point 

depicts the ±standard error (SE) boundaries. We chose to plot only the mean values because 

graphing all sample points results in plots that are cluttered and difficult to interpret, especially 

for the lower dose groups, which show little separation. The spread in data points, however, is 

shown in Figure 3 for the 50 mg/kg ANIT dose group. The control group in these plots is 

composed of all vehicle control animals collectively from each dose study (n=22 at days 0, 1, 2; 

but n=14 at days three and four). The larger sample size for days zero-two results from the 8 

additional animals included from the two-day ANIT study (see Experimental Procedures).  
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Figure 2. PCA of each ANIT dose as a function of time from day-zero (pre-dose) to day-

four post-dose (see legend in panel B).  

Treated (filled symbols) and vehicle-treated control (open symbols) data are plotted as the mean 

value for the first two principal components (PC1 vs. PC2) with an ellipse indicating the ±SE in 

both dimensions. Corresponding control animals were included with each ANIT dose 

experiment, but these PCA included all controls (n=14 or 22 depending upon the time point; see 

below) versus each individual ANIT dose group as follows: (A) 0.1 mg/kg (n=6); (B) 1 mg/kg 

(n=6); (C) 10 mg/kg (n=7); (D) 20 mg/kg (n=7); (E) 50 mg/kg (n=13 for d0, d1, and d2, but n=5 

for d3 and d4); and (F) 100 mg/kg (n=9). The n-values for the control group (n=22 for d0, d1, 

and d2; n=14 for d3 and d4) and the 50 mg/kg group vary at different times since they included 
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an additional separate cohort of animals, which were sacrificed at 2-days post-dose. PCA vector 

trajectories (arrows in panels C-F) represent induction of ANIT-induced changes in mapping 

position with respect to time. Note the different scales between dose groups indicating the range 

in data values (i.e., ≤20 mg/kg versus 50 mg/kg versus 100 mg/kg). 

 

 

 

 

 

Figure 3. Representative PCA plot displaying data points for animals exposed to 50 mg/kg 

ANIT and controls as a function of time.  

Left Panel: Data are presented as in Figure 2, where encircled data points represent mean ± SE 

for each group-time data. Right Panel: Data points represent PCA mapping position for all 

animals in ANIT treated and control groups. Sample size (n-value) at each time point is given in 

the legend to figure 2. 

 

 

The plots in Figures 2 and 3 show differences in the mapping positions reflecting changes 

in biochemical composition of the urine between control and ANIT treated animals. 

Additionally, changes in the urinary mapping position (i.e. biochemical composition) over time 

were observed for the corn oil vehicle control group, presumably due to metabolism of the corn 
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oil. The vehicle control group mean values for day-one are separated from the day-zero (pre-

dose) data, and at days two and three show a trajectory back towards pre-dose values (n=22). 

However, at day four the trajectory of the vehicle control again moves away from the pre-dose 

position. This is most clearly seen in Figures 2A-D (the scale in Fig. 2E and 2F is too large to 

show the dispersion in control data points).  

 

In general, urine spectra of animals least affected by ANIT exposure mapped in the 

general vicinity of coordinate clusters relating to vehicle control. The two lowest dose groups 

(0.1 and 1 mg/kg) shown in Figures 2A and 2B, respectively, appear similar to control data at all 

time-points. At 10 mg/kg ANIT (Fig. 2C), the day-one and day-two data for the treated group 

cluster together, while the vehicle control group moves back towards the pre-dose position along 

PC1. Clear separation between control and ANIT treated animals, however, was observed 

between day-one and day-two (24 - 48 h post-dose) with doses ≥ 20 mg/kg (Figures 2D-F; 

Figure 3). Although there was some partial overlap of the day-one time point at the 20 mg/kg 

ANIT dose (Figure 2D), the means between the control and treatment groups are clearly 

separated at this time point, and this separation is greatly increased at day-two. By day-four, 

however, there appears to be an overlap of mapping position between vehicle control and ANIT 

treated animals for doses ≤50 mg/kg, reflecting a newly established control mapping position 

(Figures 2A-E and Figure 3A). The 100 mg/kg ANIT group does not exhibit this overlap at day-

four indicating that differences in mapping position between control and ANIT treatment at this 

time point are due to ANIT exposure and not corn oil (Figure 2F).  

 

The PCA trajectories (Figure 2) are quite informative when viewed as a function of ANIT 

dose and time. At 20 mg/kg, trajectories moved away from controls on days one and two, but 

clustered with controls again on days three and four. A similar pattern is seen for 50 and 100 

mg/kg doses, but the recovery during days three and four are clearly different, as would be 

expected with sustained tissue toxicity. A comparison of 50 and 100 mg/kg doses shows that the 

former returns to control positions in the PCA plot, while the latter remains separated from 

controls at day-four. Indeed, clinical chemistry data showed recovery for 50 mg/kg at day-four, 

but plasma ALKP, AST and ALT remained elevated following exposure to 100 mg/kg ANIT 
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(Tables 1 and 2). Effects of ANIT at low doses (<20 mg/kg) were minimal indicating that an 

adaptive process is occurring without producing any overt signs of toxicity. Histopathology and 

clinical chemistry data corroborate this result (Tables 1, 2, and 3). The observed liver 

histopathology was consistent with effects known to occur in liver following exposure to the 

model cholestatic liver toxicant ANIT (Chisholm and Dolphin, 1996; Plaa, and Priestly, 1976). 

Although clinical chemistry data were not obtained on day-two for doses other than 50 mg/kg, 

toxic effects were evident at day-one following doses ≥50 mg/kg ANIT. These effects (elevated 

plasma ALT and AST) subsided by day-four following 50 mg/kg ANIT, but animals failed to 

recover fully by day-four at a dose of 100 mg/kg. These results were similar to those reported 

previously for ANIT exposures in rats (Clayton et al., 2004; Robertson et al., 2000; Beckwith-

Hall et al., 1998; Chisholm and Dolphin, 1996). Correspondingly, the metabonomics urinary 

PCA (Figure 2) shows a separation between vehicle-control and treated at day-one for both 50 

and 100 mg/kg ANIT doses, but at day-four this separation was only evident for the 100 mg/kg 

dose. Thus, classic plasma indices of liver toxicity and urinary metabonomics indices agree, and 

urinary metabonomics analyses appear to be reflective of the liver response as a function of dose 

and time.  

 

Because the maximal effect of ANIT on urinary metabolites was observed at day-two 

post-dose in the PCA scores plots as a function of time, we constructed a dataset for all groups 

(treated and control) using only the day-two data and conducted a PCA. Again, the control group 

for this analysis included vehicle control animals from all studies grouped together (n = 22). The 

scores plot (PC1 vs. PC2) depicted in Figure 4 (Left Panel) shows a clear separation of groups in 

PC space as a function of dose. A plot of the mean PC1 value versus dose (0 to 100 mg/kg), as 

shown in Figure 4 (Right Panel), yield a good fit to a linear correlation line (r
2
 = 0.985). 
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Figure 4. PCA of ANIT dose-response for urinary metabolite data measured at day-two. 

 Left Panel: shows the PCA scores plot (PC1 vs. PC2) for vehicle control and each ANIT dose 

group (0.1 to 100 mg/kg) measured at day-two. Data are presented as in Figure 2 with encircled 

data points representing the mean ± SE for each group (n-values are given in the legend to Fig 

2). PCA vector trajectories represent ANIT-induced changes in mapping position with respect to 

dose (as labeled in plot). The mean PC1 value for each group plotted versus dose is shown in the 

Right Panel along with a linear correlation line fit (r2=0.985). 

 

The data plotted in PC-space (Figure 4) show a clear dose response curve for ANIT. The 

low doses (0.1 and 1 mg/kg) cluster very near the control group (vehicle only), but as the dose 

increases (10 mg/kg and above) the groups move increasingly apart from one another. Indeed, 

there is a strong linear correlation (r
2
 = 0.985) between the mean PC1 value and ANIT dose (Fig. 

4, Right Panel). The between-group separations are largest as doses progress from 20 to 50 to 

100 mg/kg ANIT. Therefore, there seems to be a distinct transition in the range 20-50 mg/kg that 

corresponds with a level of severity in biological effects that leads to tissue damage. Indeed, the 

50 mg/kg dose shows significant effects in clinical chemistry data at days one and two that 

appears to resolve by four-days post-dose (only minimal-to-mild effects in liver pathology are 

observed at day-four). Furthermore, no observable clinical chemistry or histopathology effects 

were noted at these time points for ANIT doses ≤ 20 mg/kg. 
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3.2.2  LDA Results. 

 

Since doses of ≥20 mg/kg showed significant effects in urinary metabolite profiles as 

determined by PCA analysis, we conducted LDA and hierarchical clustering analysis at these 

doses (Figures 5 and 6) to examine further the spectral features that account for these effects. 

Interestingly, the data clearly show significant changes in the urinary metabolite profiles at doses 

≥20 mg/kg ANIT that revealed similar patterns suggesting a characteristic toxic effect of ANIT 

exposure. Furthermore, these data also demonstrated a unique change occurring at 100 mg/kg.    

 

Overall, the maximal dose-response effect of ANIT as determined from the urinary 

metabolite PCA trajectories (Figures 2 and 3) occurred at two-days post-exposure. Therefore, we 

conducted a LDA for each dose group versus vehicle control at the identical day-two time point. 

Two-dimensional plots of the first two LD projections for each dose group versus controls 

showed separation for doses ≥20 mg/kg, but only the 50 and 100 mg/kg doses produced a clear 

"within group" clustering of treated samples and control samples with a complete separation 

between groups (Figure 5). The LDA coefficients of the first discrimant vector (LD1) provided a 

ranking of bins (most significant to least significant) for the 20, 50, and 100 mg/kg groups vs. 

controls.  

 

 

 

 

20 50  100 
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Figure 5: Linear Discriminant Analysis (LDA) for 20, 50 and 100 mg/kg ANIT dose groups 

(filled diamonds) versus vehicle-treated controls (open squares) at two-days post-dose.  

The plots (LDAprojection 1 vs. LDA projection 2) show the clustering of samples within groups 

and separation between groups, particularly for the 50 and 100 mg/kg doses. Note that the scale 

of the axes also increases with increasing dose indicating greater discrimination of group 

clusters. 

 

We then took the absolute value of the LDA coefficients normalized across each dose 

group and compiled a list of bins from the top 50% by LDA weight from each of the three dose 

groups. The combined list from all three dose-groups yielded a total of 31 unique bins, which 

were then compiled with their associated weighting factors and used as input for a hierarchical 

clustering analysis by the centroid method (JMP software, SAS, Inc.). Figure 6 shows the 

dendrogram and color heat-map from this analysis in which a two-way clustering was conducted 

for salient bins (listed by chemical shift values, ppm, at the bin center) versus ANIT dose (20, 

50, and 100 mg/kg). Two observations are noteworthy: 1) there is a set of bins (spectral regions) 

with similar significance across all doses, and 2) the 100 mg/kg dose shows a few bins that are 

uniquely different than the lower doses. With regard to the former observation, the top portion of 

the color map in Figure 6 shows 13 bins with about equal significance across all doses 

(gray/blue), and the bottom portion of the figure contains 5 bins that are also similar across dose 

but of greater significance (red). These are predominately signals from citrate, α-ketoglutarate 

(2-oxo-glutarate), and trimethylamine oxide (TMAO; presumably betaine), which are known to 

decrease significantly in urine following ANIT treatment (Waters et al., 2002; Waters et al., 

2001).  
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Figure 6: A hierarchical clustering analysis for the 20, 50, and 100 mg/kg ANIT dose 

groups.  

The dendrogram and color map depicts 31 bins labeled along the left edge as the chemical shift 

(ppm), and the columns represent each ANIT dose (labeled at the bottom of the map). The bins 

or ppm are grouped according to similar patterns in the weighting factors (LDA coefficients). 

Metabolite abbreviations corresponding to ppm(s) indicated at left are: phenylacetylglycine 

(PAG); hippurate (HIP); glucose (Glu); creatine (Crea); alpha-ketoglutarate (αKG); and 

trimethylamine oxide (TMAO). The data show sets of spectral features that define high dose, 

particularly 100 mg/kg versus the two lower doses (see text for details). 
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Additionally, there is a change in the metabolite profile, particularly for the 100 mg/kg dose in 

comparison to 20 and 50 mg/kg. At 100 mg/kg it appears that signals at 7.42, 3.58, 3.75, 3.68, 

7.36, and 3.05 ppm show increased importance (in the order listed). Three of these signals (3.75, 

7.36, and 7.42 ppm) are all assigned to phenylacetylglycine (PAG), the signal at 3.05 ppm is 

from creatine, the signal at 3.68 ppm is glucose and the signal at 3.58 is unknown. Both PAG and 

creatine show increased urinary excretion at day-two post-dose with 100 mg/kg ANIT, which is 

a distinguishing feature for this dose versus lower doses. 

 

An interesting observation is illustrated in the cluster analysis for 20, 50, and 100 mg/kg 

doses (Figure 6). The urinary profiles show subtle changes in metabolites across this dose-range, 

but these are easily discernible in the PCA scores plots (Figures 2 and 4). The similar effects of 

ANIT across dose include a decrease in urinary excretion of citrate, hippurate, α-ketoglutarate 

(or 2-oxo-glutarate), and TMAO. Slight changes in the relative amounts of these compounds 

likely account for much of the differences between ANIT doses up to about 50 mg/kg; recovery 

from these ANIT doses (at times beyond day-two) is evident in the PCA trajectories (Figure 2) 

and the blood clinical chemistry data (Table 1). Unique features evident only at the highest ANIT 

dose are also revealed by this analysis. One unique feature is the level of urinary creatine, which 

was elevated at 100 mg/kg ANIT exposure and represents the most important spectral feature 

(signal at 3.05 ppm) that separates treatment from control at day-two post-dose. Additionally, 

changes in PAG and hippurate are important discriminating factors, whereby ANIT caused an 

increase in urinary PAG and a decrease in hippurate (Figure 1). However, at 100 mg/kg ANIT 

the level of significance for PAG (7.42, 7.36 and 3.75 ppm) was greater than it was at 20 or 50 

mg/kg, while hippurate (4.00, 7.57 and 7.84 ppm) showed the opposite trend of being a more 

important factor at the lower doses. Thus, these three metabolites (creatine, PAG, and hippurate) 

provide discriminating features for doses from 20 – 100 mg/kg ANIT. The changes observed for 

citrate and α-ketoglutarate (decreased excretion relative to controls) are important features of 

ANIT toxicity, but they do not provide discriminatory information about the dose-dependent 

effects within the range from 20 – 100 mg/kg (Figure 6). This type of information would not 

have been obtainable without this time- and dose-response analysis. The more severe effects of 

ANIT toxicity are clearly evident at 100 mg/kg, where creatine and PAG urinary excretion 
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increases, blood chemistry shows elevated liver enzymes, and marked effects are noted in liver 

pathology. Others have also noted profound effects of 100 mg/kg ANIT in rats including urinary 

excretion of bile acids (Uchida et al., 2002; Waters et al., 2002; Waters et al., 2001; Chisholm 

and Dolphin, 1996) and elevated urinary creatine (Clayton et al., 2004; Robertson et al., 2000; 

Waters et al., 2001; Beckwith-Hall et al., 1998), as seen herein. Additionally, the elevation of 

plasma enzymes indicative of liver damage was observed at both day-one and day-four post-dose 

at 100 mg/kg ANIT (Table 1), which corroborates studies by others using this same dose 

(Clayton et al., 2004; Robertson et al., 2000; Beckwith-Hall et al., 1998; Chisholm and Dolphin, 

1996). These techniques can pave the way for the detection of both biomarkers of exposure, 

which typically occur at low doses, as well as biomarkers of toxicity that occur at higher doses. It 

is clear that following a single low dose exposure to ANIT (≤10 mg/kg) maximum effect and 

recovery occur within four days post-dose, and this chemical exposure can be monitored by PCA 

of urinary metabolite profiles. At higher doses, the urinary metabolite patterns indicate that 

exposure and toxicity are both evident (particularly above ~20 mg/kg), recovery is not complete 

by day-four, and such results correlate with established toxicity assays. The biochemical basis 

for these metabolic effects is presumably related to a disruption of mitochondrial energy 

metabolism in exposed animals since the levels of citric acid cycle intermediates (citrate and α-

ketoglutarate) decreased. Glycine metabolism may have also been impacted since the levels of 

urinary excretion of hippurate (benzoylglycine) and PAG were affected by ANIT treatment. 

However, changes in the level of these two metabolites more likely reflects the effects of ANIT 

on gut microflora (Nicholson et al., 2005).  Furthrmore, at 100 mg/kg ANIT exposure, the 

urinary excretion of creatine in F344 rats was increased, which is interesting since liver does not 

contain creatine kinase activity; however, creatine is synthesized in the rat liver by methylation 

of guanidoacetate via guanidoacetate methyltransferase (Loo et al., 1986). Elevated urinary 

creatine following ANIT exposure has also been documented in other strains of rats such as 

Wistar (Waters et al., 2001; Robertson et al., 2000) and Sprague-Dawley (Clayton et al., 2004; 

Beckwith-Hall et al., 1998). This dose of ANIT may also be impacting other tissues in addition 

to liver (i.e. heart and muscle), or biosynthetic pathways in the liver. Others have demonstrated 

similar effects of ANIT on tissue metabolism including effects on citric acid intermediates and 

decreased bile acid production (Shockcor and Holmes, 2002). 
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3.2.3  Spectrum Profiling: Application of Chenomx NMR Profiler. 

 

In order to identify important metabolites and possible biomarkers, the Chenomx NMR 

Profiler application was initially applied to one sample selected from the controls and one sample 

selected from the ANIT treatment group. These samples were chosen based on their large degree 

of separation in the PLS-DA scores plot (Figure 7). Two additional samples (control and ANIT 

treated) were then profiled in order to assess whether the qualitative conclusions drawn from 

examining the first pair are also exhibited in the second pair. It was observed that both pair-wise 

analyses were consistent, and therefore the spectra of these samples were annotated in detail. 

 

 

 

 

Figure 7: Scores plot of Pareto scaled, Chenomx software processed, 0.04 ppm binned, 

normalized spectra of the 48 hour post-dose ANIT data. Blue discs are controls. 

 Red triangles are 50 mg/kg dosed subjects. 
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In the figure above, Sample 208 is identified because it was decided to delete it in the 

subsequent PLS-DA analysis. This decision was made because it slightly improved the percent 

variation captured in the first PLS-DA component, and it was assumed that this fact would lead 

to a more clearly interpretable PLS loading analysis. However, it is believed that the impact of 

deleting Sample 208 is minor and that all of the subsequent results would also follow from an 

analysis that includes Sample 208. 

 

We noted that metabolite concentrations needed to be adjusted by a normalization 

process prior to making comparisons between controls and ANIT-dosed samples. A simple way 

to normalize can result from dividing all sample concentrations by the creatinine level of the 

corresponding samples. By implementing this procedure, comparing the four spectra in detail, by 

examining the loadings in detail and by studying the research literature, at least 19 metabolites 

were identified that warranted further detailed investigation (Table 4). 

 

 

Table 4: List of potentially interesting metabolites resulting from the 48 hour ANIT (50 

mg/kg) analysis. This list is preliminary and not comprehensive. 

 

 

 

The above Table is only preliminary, and further investigation is being conducted. 

However, it should be noted that some of the metabolites (e.g. trigonelline and NAD+), might 

not have been discussed in the prior published literature on ANIT toxicity and metabonomics. 
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Known biomarkers of ANIT exposure identified in the literature using NMR (Shockcor 

and Holmes, 2002), as well as those identified by NMR in the present study using hierarchical 

clustering analysis and Chenomx NMR Profiler software described above,  include: acetate, bile 

acids, glucose (up-regulated); citrate, hippurate, 2-OG, and succinate (down-regulated). 

Consistent across all ANIT dose levels ≥10 mg/kg was the observation of a decrease in urinary 

excretion of citrate, α-ketoglutarate, trimethylamine oxide (TMAO; an oxidation byproduct of 

choline and dietary methylamines), and hippurate. Others have also reported decreased excretion 

of citrate, succinate, α-ketoglutarate, and hippurate in NMR-based metabonomics studies of 

ANIT toxicity in the rat (Waters et al., 2002; Waters et al., 2001; Robertson et al., 2000; 

Beckwith-Hall et al., 1998). Our observation of decreased TMAO excretion, however, does not 

appear to be a major finding in these other reports. In fact, Waters, et al. (2001) found an 

increase in urinary excretion of TMAO at 144 h post-dose with 150 mg/kg ANIT in Han-Wistar 

rats. Thus, the metabolism associated with methylamines may be strain/species dependent and, 

consequently, not a useful biomarker of cholestatic hepatotoxicity. 

 

3.3 UPLC/MS Analysis (Negative-Mode) of Urine Samples (Solutions Labs, Cambridge, 

MA) 

 

The negative mode data using above UPLC-MS conditions yielded excellent group 

separation (Figure 8). After cleaning the data set using the previously described filtering, an 

automated metabolite identification was run and several interesting metabolites (e.g. 

glycocholate and taurocholate) were highly ranked, but no retention time (RT) library existed for 

these solvent conditions. As a result, identifications were inconclusive at present. 

 

The second set of negative mode acquisitions utilized the same solvents as positive mode 

studies. Unfortunately, the resulting data set yielded over 180 ion species whose intensities were 

saturated. Because of the highly skewed distribution (typical of UPLC-MS data in general) of ion 

intensities across all the species (large fraction of total sample intensity coming from a small 



Distribution A:  Approved for public release; distribution unlimited. 
29 

  

 

 

fraction of metabolites), we believe that this data set is of insufficient quality to analyze. Since 

the saturation for these solvent conditions was most likely caused by insufficient dilution, we 

doubled the dilution to 6:1 in a planned follow-up study. 

 

 

 

 

Figure 8: PCA plot of Markerlynx mean centered, UV scaled negative ion mode data 

(15,000 variables) for Ammonium Acetate in the solvents. 

 

 

3.3.1  UPLC/MS Analysis (Positive-Mode) of Urine (Solutions Labs, Cambridge, 

MA). 

 

Previous analysis attempted to extract markers from a two-sample group comparison of 

controls and ANIT dose group at day-two, since the maximum perturbation of the metabolic 
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profile occurred at the second day. However, PCA analysis of the full UPLC/MS data set clearly 

shows that samples of the ANIT dosed animals from the first day cluster coherently away from 

both controls and the second day samples. Thus, it would be possible to conduct a 

comprehensive analysis of the day-one data that corresponds to that attempted with the day-two 

data. Results derived from day one analysis would yield markers not present at day-two and vice 

versa due to the time dependent nature of perturbations to the metabolic profile. Rather than 

identifying differences between types of markers present in the samples of day-one and day-two, 

it was decided to identify markers that exhibit strong differential regulation in the day-one data 

that also either maintain a similar level of differential regulation at day-two or show an 

increased/decreased trend in the same direction. The motivation for this analysis was the 

discovery of markers for early detection of a pathological process. Moreover, it was conjectured 

that at least some of these markers might persist in the data collected beyond day-two. If this 

hypothesis is correct, then these particular types of markers might be strong candidates, subject 

to establishing their biological specificity, for inclusion in a toxicity exposure detection system.  

 

Four two-group PLS-DA analyses (two for each day) were conducted in order to rank 

variables. They included: (i) day-one controls versus day-one 50mg/kg ANIT using a data matrix 

normalized using the total sum of intensities for each sample; (ii) day-one controls versus day-

one 50mg/kg ANIT using a data matrix normalized using the total sum of intensities for each 

sample. This normalization was followed by a logarithmic transformation of the data; (iii) and 

(iv): the day-two analysis corresponding to (i) and (ii). After normalization (and logarithmic 

transform in cases (ii) and (iv), the data matrix was processed with a unit variance scaling across 

each variable (i.e. intensities of each m/Z and RT combination). 

 

The analyses with logarithmic transformation were considered due to theoretical studies 

in the literature with regard to advocating the use of these transformations due to their ability to 

effect variance stabilization. However, our experience indicated that while log transformed data 

often uncovers interesting features (i.e. high ranked variables), it appears to be over-sensitive to 

outliers in some variables. We have found in prior research that analyses without log 

transformation should also be conducted and compared to the transformed data. 
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After concluding the variable ranking, a procedure was implemented in order to 

tentatively identify candidates for early onset biomarkers. The rankings and two data matrices 

(day-one and day-two) were used to select variables with the following properties: (i) for each 

day, the highest of the two rankings should be less than 150; (ii) for each day, the lowest of the 

two rankings should be less than 800; (iii) variables meeting the first two specifications should 

also have mean intensities in the upper 25% of readings in their respective data matrices. The last 

requirement follows from the assumption that variables with a strong signal are compounds that 

might be in high enough concentration to be detectable by methods other than mass 

spectrometry. Although this procedure needs to be subjected to further testing and refinement in 

order to define the optimal constraints for variable selection (e.g. perhaps lower intensity 

variables should also be considered), we have already found interesting candidate variables for 

further study. 

 

A list of 19 variables was selected by the above procedure. To illustrate the potential 

value of these results, an example of a normalized trends plot of one selected variable (m/Z = 

448.1048 and RT = 5.073) is presented in Figure 9. We believe that it should be possible to 

extract early onset markers from the UPLC-MS profile data if the actual chemical identity of 

candidate biomarkers may be found in order to assess biological specificity. 
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Figure 9: Normalized ion intensity across samples for ion species with m/Z = 448.1048 and 

RT = 5.073.  

Top panel is data from day one and bottom panel is day two data. First 8 subjects are control 

animals and subjects 9 to 16 are animals dosed with 50 mg/kg of ANIT. 

 

3.3.2  PCA Analysis of High-Dose ANIT Data (Solutions Labs, Cambridge, MA). 

 

Positive ionization mode UPLC-MS data for the high-dose ANIT (100 mg/kg) was 

acquired as described above with the exception that mass scanning was restricted to masses up to 

850 Daltons. After processing the centroid mode data with Waters MarkerLynx software, the de-

isotoped output data matrix consisted of approximately 22,000 variables. In order to eliminate 

non-informative variables, we applied two filtering procedures to create two separate data sets 
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that were individually analyzed. The first filtering procedure is an “endogenous metabolite 

filtering” that is implemented by demanding that a variable have a non-zero reading in at most 

three animal subjects at the pre-dose time of zero hours. This filtering results in approximately 

1600 variables being retained in the data matrix. The second filtering scans through variables 

that were eliminated by the first filtering, and it adds variables back into the data if the variables 

have at most two non-zero readings in the samples corresponding to high-dose maximum 

response (i.e. 48 hours). This filtering leads to a data matrix of about 3200 variables. Some of 

these variables will be xenobiotics, but others will be endogenous metabolites that are below the 

detection limit in animal subjects not perturbed by ANIT. After further manipulation of the data, 

involving sum normalization, logarithmic transformation and unit-variance scaling, we 

conducted a PCA analysis to assess cluster separation and the effective dimensionality of the 

data. For both types of filtering, we found that the majority of the variance was contained in the 

first two components (Figures 10 and 11). 
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Figure 10: Percent variation by PCA component for unit-variance scaled data matrix 

resulting from filtering to retain mostly endogenous compounds (approx. 1600 variables). 
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Figure 11: Percent variation by PCA component for unit-variance scaled data matrix resulting 

from filtering to retain mostly endogenous compounds and additional high-dose markers 

(approx. 3200 variables). 

 

3.3.2.1  PCA Scores Plots (Solutions Labs, Cambridge, MA). 

 

Scores plots were examined to identify clustering and to confirm that the first PCA 

component is mostly associated with ANIT exposure as opposed to normal metabolic variation 

between animal subjects.  The 3200 variable filtering leads to better separation, and this 

observation is to be expected based on the strong presence of xenobiotics and of products from 
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bile acid synthesis that might be below normal detection (Figure 12). These compounds are 

expected to help induce clustering. However, the 1600 variable filtering also shows clear 

clustering (Figure 13), and it has another special feature. Specifically, the controls appear to drift 

along the second component, and if this component is assigned to individual variation and the 

“corn oil effect”, then it can be argued that these effects are very small compared to the ANIT 

perturbation by noting that the first component captures much more variance than the second 

component (see Figure 10). 

 

Figure 12: PCA scores for unit-variance scaled data matrix resulting from filtering to retain 

mostly endogenous compounds and additional high-dose markers (approx. 3200 variables). 

 The points plotted as stars are the control subjects at the color coded times corresponding to the 

dosed subject (solid dots). 
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Figure 13: PCA scores for unit-variance scaled data matrix resulting from filtering to retain 

mostly endogenous compounds (approx. 1600 variables).  

The points plotted as stars are the control subjects at the color coded times corresponding to the 

dosed subjects (solid dots). 

 

3.3.3  PLS-DA and Variable Selection (Solutions Labs, Cambridge, MA). 

 

In order to assess the importance of variables with respect to being markers for ANIT 

exposure (and candidate biomarkers), a subset of the data corresponding to the maximum 

metabolic perturbation was selected (i.e. 100 mg/kg group at two days post-dose) and compared 

to the controls. As usual, PLS-DA is a convenient method for ranking variables. When PLS-DA 

was applied to the 3200 variable data set, a clear separation of the data occurs with about 99% Y-

Block variance and about 52% X-Block variance was captured by just the first component. 

 

After completing the PLS-DA analysis, further analysis included scanning the data matrix 

to identify possible sodium, potassium, and ammonium adducts for each variable. This procedure 

was followed by looking into a 20 ppm window around each variable mass (assuming an M + 
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proton ionization) and comparing to the KEGG database. Over 4000 possible mappings between 

KEGG compounds and the data matrix resulted from the analysis, but most were false 

identifications. Further efforts to identify candidate metabolites were made using Solutions Labs‟ 

metabolite library, and following possible identifications were made (Table 5). 

 

Table 5. Tentative Metabolite Identification in rat urine using UPLC/MS and PLS-DA 

Analysis.  

 

 

 

 

 

It is noted that these metabolites are only possible identifications. However, due to high 

intensities of candidate metabolites (assuming a correlation between intensity and concentration) 

there is great confidence in their identity because these tend not to be merely artifacts from the 

MarkerLynx processing. To illustrate the problematic nature of UPLC-MS variable intensities, a 

histogram of mean variable intensities is presented in Figure 14. 
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Figure 14: Histogram of normalized mean variable intensities for the 3200 variable data set.  

Single outlying  g variables, which are difficult to see in the figure, are indicated by arrows to 

make them easier to identify. 

 

 

This highly skewed intensity distribution has a mean intensity of 3.1 and a median of 0.8, 

and many variables are of extremely low intensities. Some of these variables are artifacts; for 

example, we have found one variable that has predominantly non-zero readings across pre-dose 

animal subjects (and hence is included in the data matrix), but it has zero readings across the 

reduced data matrix consisting of samples taken at 48 hours. We believe that this problem might 

be due to instrumental drift, and Solution Labs is developing algorithms to identify these 
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problems. It should be noted that these problems are very rare and seem to only exist for very 

low intensity variables. Therefore, it is possible to proceed with extracting useful information 

from current analyses as long as awareness of potential complications is noted. Ultimately, it will 

be necessary to go back to individual sample chromatograms to verify results found by statistical 

manipulation of the mass tables. 

 

To further support the validity of a metabolite variable, it is helpful if that variable has 

possible adducts, since this possibility provides some additional support to the assumption that 

each variable has ionized via a mass plus proton mechanism when we conducted the KEGG 

search. Normalized expression levels of candidate metabolite markers identified across 48 hour 

rat urine samples is presented below (Figure 15). 
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Figure 15: Normalized expressions for the variables tentatively identified by using the RT 

metabolite library. 

 

 

It should be noted that the creatine candidate metabolite appears to be a clear marker 

even though it is only ranked number 362, and this illustrates the richness of the data set with 

respect to the number of potential markers that it contains. Furthermore, of the variables 

presented, creatine has a possible potassium adduct, citrate has possible sodium, potassium and 

ammonium adducts, and creatinine has a possible sodium adduct. Because these metabolite 

variables also have very high intensities, there is a high degree of confidence as to their identity. 

The other metabolites need to be investigated further, but it is hypothesized that the variables 

with intensities of order ten or higher are less likely to be numerical artifacts than the lower 

intensity compounds.  
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In addition to candidate metabolites tentatively identified from Harvard University‟s RT 

library, the identity of the other metabolites can be deduced. Specifically, evidence is presented 

in the analysis of the two-day 50 mg/kg data that two compounds from the bile acid biosynthesis 

pathway were up-regulated (i.e. glycocholate and taurocholate). Results indicate that these 

candidate metabolites can also be observed in the 100 mg/kg ANIT experiment (Figures 16 and 

17). 

 

 

 

 

 

Figure 16: Intensity expression levels of three candidate metabolites (based on similar m/Z but 

differing RT) for glycocholate. 

 Data set is the normalized 3200 variable data table. 
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Figure 17: Intensity expression levels of three candidate metabolites (based on similar m/Z but 

different RT) for taurocholate.  

Data set is the normalized 3200 variable data table. 

 

 

It cannot be determined which of these candidate metabolites is the true compound 

without measuring the RTs of glycocholate and taurocholate standard metabolites. However, 

these higher intensity candidate biomarkers are more promising, and it should be noted that the 

taurocholate candidates with RT values of 7.18 and 6.74 both have possible adducts as does the 

glycocholate candidate with RT of 7.58. In an attempt to gain insight into the possible 

identification of these two bile acids, assuming an ionization by M 
+ 

H
+
, a 20 ppm window was 
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opened around each m/Z and compared to each entry in a combined KEGG and METLIN 

database using a Matlab script for automatic mass matching. Many false positives were noted, 

and these can be eliminated only by constructing a RT database of pure metabolites. However, 

by searching for a combination of hypothetical metabolite species along with their adducts, we 

believe that we provide strong supporting evidence for identifying taurocholate and glycocholate 

as up-regulated biomarkers on the bile acid biosynthesis pathway. 

 

Another potential candidate metabolite that was identified in this experiment was 

hippurate (Figure 18). As indicated above, this metabolite‟s identity should be confirmed by 

adding hippurate to the metabolite RT library. It should be noted that this metabolite is extremely 

interesting because it is unsaturated in spite of its high intensity and it has both possible sodium 

and potassium adducts. Thus, there is a high degree of confidence that it is some type of single-

protonated marker regardless of its final identity. However, great care should be exercised in 

assigning this metabolite as a marker of ANIT toxicity because it is more than likely associated 

with gut microflora metabolism. 
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Figure 18: Intensity expression for the candidate metabolite hippurate with m/Z = 180.0654 and 

RT = 3.98 

 

 

 

Although we have provided weaker evidence that hippurate, succinate, and 2-

oxoglutarate metabolites have been identified in rat urine profiles from animals exposed to 

ANIT, their identities can be validated by including pure species of these metabolites in a RT 

database. Interestingly, by scanning the data matrix using Harvard University‟s RT database we 

have also identified the following additional compounds: L-tryptophan, L-leucine, serotonin, 

thiamine, 5-hydroxy-L-tryptophan, L-arginine, betaine, creatinine, L-threonine, L-phenylalanine, 

cytidylic acid, D-pyroglutamic acid, creatine, and 4-guanidinobutyric acid. However, none of 
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these were considered candidate biomarkers for ANIT exposure due to their low PLS-DA 

ranking. 

 

An algorithm has been developed by Solutions Labs for matching data matrix variables 

with possible (M
 +

 Na
+
, M 

+
 K

+
, and M 

+ 
NH4

+
) adducts. This information was used, along with 

PLS-DA rankings, to surmise the potential existence of over one hundred ionic species that could 

prove useful as small molecule biomarkers of ANIT exposure. However, identifying these 

potential biomarkers will require using a large RT database. 
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4.0 CONCLUSION 

In this study we examined the urinary metabolite profiles using both NMR-based and 

UPLC/MS-based metabonomics from rats following a single exposure to ANIT at various doses, 

and as a function of time post-dose. In toxicology, such dose-time metabonomics studies are 

important for an accurate determination of the severity of biological effects, and for biomarker 

identification that may be associated with toxicity. This study design enabled us to observe: 1) 

effects from vehicle solution (corn oil), 2) the onset and progression of ANIT-induced biological 

effects, and 3) the recovery process as a function of dose and time. Furthermore, this work 

expands upon other similar studies reported in the literature by investigating ANIT toxicity over 

a greater dose range (0.1 – 100 mg/kg) and time-course post-exposure.  

 

The results present here demonstrated the greater sensitivity of both the NMR-based and 

UPLC/MS-based metabonomics, in conjunction with multivariate data analysis techniques, when 

compared with traditional clinical chemistry analysis for the detection of chemical exposure, the 

serial progression of the metabolic perturbations and recovery process, and the similarities and 

differences in metabolite profiles across ANIT doses. 

 

The data from the present study suggests that NMR-based and UPLC/MS-based 

metabonomics are capable of detecting exposure to low doses of a classic cholestatic liver 

toxicant at levels below that observable by traditional methodologies (clinical chemistry and 

histopathology). These data correlate very well with an earlier biochemical study investigating 

abnormal lipoprotein metabolism, known to be associated with human hepatic cholestasis, 

following ANIT exposure in rats (Chisholm and Dolphin, 1996). This study showed that ANIT 

treatment induced a transient (maximal at day-two) and reversible hepatic cholestasis. In the 

present study, recovery from a single exposure began on day-three and showed a return towards 

pre-dose coordinates by day-four. The results presented in this study demonstrated the ability of 

NMR-based and UPLC/MS metabonomics to yield dose-response relationships that could be 

useful to probe for metabolite biomarkers of toxicity.  
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GLOSSARY 

 

2-OG – 2-oxoglutarate 

AFB – Air Force Base 

AFRL – Air Force Research Laboratory 

ALKP - alkaline phosphatase 

ALT - alanine aminotransferase 

ANIT - alpha-naphthylisothiocyanate 

AST - aspartate aminotransferase 

BUN - urea nitrogen 

°C – Celsius 

CDFR(F344)/CrlBR – Fisher 344 rat strain 

CREA - creatine 

F344 – rat strain 

fmol - femtomole 

HPW/ RHPB – Human Performance Wing/ Research Human Performance and Biotechnology 

Hz – hertz 

IACUC - Institutional Animal Care and Use Committee 

KEGG - Kyoto Encyclopedia of Genes and Genomes 

kg – kilograms 

LC - liquid chromatography  

LDA  - linear discriminant analysis 

M – moles 

METLIN – Metabolite Link Database 



Distribution A:  Approved for public release; distribution unlimited. 
55 

  

 

 

mg – milligram 

Mhz – megahertz 

mL – milliliter 

mm - millimeters 

mM – millimoles 

MS - mass spectroscopy  

ms – millisecond 

m/z – mass to charge ratio 

NMR – nuclear magnetic resonance 

NOESY - Nuclear Overhauser Effect Spectroscopy 

OPLS-DA – Orthogonal Partial Least Square-Discriminant Analysis 

PAG - phenylacetylglycine 

PC - principal components 

PCA - principal component analysis 

PLS-DA - partial least squares-discriminant analysis 

ppm – parts per million 

PTFE - polytetrafluoroethylene 

Q-Tof - Quadrupole-Time of Flight 

rpm – revolutions per minute 

RT – retention time 

s- seconds 

SE - standard error 

TMAO – trimethylamine oxide 

TP – total protein 
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TSP - trimethylsilylpropionic (2, 2, 3, 3 d4) acid 

µL – microliter 

V - voltage 

UPLC - Ultra Performance Liquid Chromatograph 

 


